Charged Particle Detectors

David Strom
University of Oregon

- Interactions of charged particles and photons with matter
- Gas detectors
- Cherenkov Detectors
- Silicon detectors
Interactions of charged particles with matter

Charge particles traversing matter produce electromagnetic fields that can remove electrons from atoms.

The energy loss per unit length is called

\[
\frac{dE}{dx}
\]

The energy loss depends on \(z^2 \) where \(z \) is the charge of the particle, i.e. and its velocity \(\beta = \frac{v}{c} \)

\[
\frac{dE}{dx} = z^2 f(\beta)
\]

or in detail
\[
\frac{dE}{dx} = \frac{z^2 4\pi r_e^2 m_e c^2}{\beta^2} \left[\log \frac{2m_e v^2}{I(1 - \beta^2)} - \beta^2 \right] \frac{N_0 Z \rho}{A}
\]

\(r_e \) = classical radius of the electron \((\frac{e^2}{m_e c^2}) \)

\(m_e \) = electron mass

\(I \) = effective ionization potential

\(v \) = particles velocity

\(c \) = speed of light

\(\beta \) = \(\frac{v}{c} \)

\(N_0 \) = Avogadro’s number

\(Z \) = atomic number of medium

\(A \) = atomic mass number of medium

\(\rho \) = medium density

If we can measure \(\frac{dE}{dx} \) we can find \(\beta \)

This formula is called the Bethe-Bloch formula

2 July 2007
Energy loss as a function of momentum (OPAL NIM A314 (1992) 74)
• Minimum ionizing particle = MIP

• Cosmic ray muons will usually have energies close to a MIP (rise above \(\sim 500\text{MeV} \) is small)

• Stopping particles lose most of their energy near the end of their range

• Can be used to our advantage in cancer therapy

• The machine at right is called a “Mevatron”
Mevatron the band

<table>
<thead>
<tr>
<th>Genre(s)</th>
<th>Death Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Germany</td>
</tr>
<tr>
<td>Formed in</td>
<td>2002</td>
</tr>
<tr>
<td>Current label</td>
<td>Unsigned</td>
</tr>
<tr>
<td>Status</td>
<td>Active</td>
</tr>
<tr>
<td>Current line-up</td>
<td></td>
</tr>
<tr>
<td>Marita - Guitars/Vocals</td>
<td></td>
</tr>
<tr>
<td>Danielea - Bass, Keyboards, Backing Vocals</td>
<td></td>
</tr>
<tr>
<td>Mario - drums</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes
Formed by (former?) members of Sacralis. They are currently looking for a drummer so they can commence performing live. They expect their first album to be recorded somewhere in 2003.

<table>
<thead>
<tr>
<th>Submitted by</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egregius</td>
<td>September 2nd, 2003</td>
</tr>
<tr>
<td>Last modified by</td>
<td>On</td>
</tr>
<tr>
<td>HEADTHRASHER</td>
<td>January 11th, 2006</td>
</tr>
</tbody>
</table>

Member options
- Update band data
- Add new data
- Report a mistake on this page
Other energy loss mechanisms for charged particles:

- Chenekov Radiation:

\[d = \frac{c}{n} t \]

Can measure cone size (or threshold in materials with various \(n \)'s) to get \(\beta \)
- Radiative losses or “bremsstrahlung” for electrons

\[
\frac{1}{E} \frac{dE}{dx} \simeq 4 \alpha Z^2 r_e^2 \log \left(\frac{183}{Z^{\frac{1}{3}}} \right) \frac{N_0 \rho}{A}
\]

\(r_e\) = classical radius of the electron \(\left(\frac{e^2}{m_e c^2} \right)\)

\(\alpha\) = fine structure constant

\(N_0\) = Avogadro’s number

\(Z\) = atomic number of medium

\(A\) = atomic mass number of medium

\(\rho\) = medium density
Absorption of γ-rays

- Photoelectric absorption ($\gamma + A \rightarrow A^+ + e^-$)
- Compton scattering ($\gamma + e \rightarrow e + \gamma$)
- Pair production ($\gamma + Z \rightarrow e^+e^- + Z$)
Energetic γ rays and electrons produce electromagnetic showers

- Radiated photons pair convert or Compton scatter
- Electrons and positrons radiate more photons
- Etc.

For an animation see http://www.mppmu.mpg.de/~menke/elss/home.shtml

Sampling calorimeters have layers of inactive material and active detectors

Crystal calorimeters collect Chernkov and/or scintillation light from the electrons and positrons
Gas Detectors

- Geiger counters
- Proportional chambers
- Drift chambers
- Time Projection Chambers TPCs
- Resistive Plate Chambers RPCs
• A charged (or neutral particle) ionizes the gas in the counter
• An electron avalanche develops in the large E field near the wire
• A conducting path in the gas discharges the capacitor formed by the wire and case of the counter
• Counting rate of Gieger counters limited by the speed of charging up the detector after a hit
• Proportional chambers have limited gain ($< 10^6$) and signals that are proportional to the original ionization event.
• Gas gain occurs close to wires, signal independent of position.
• Georges Charpak received the 1992 noble prize for his work on these chambers.
Sector of OPAL jet chamber:
Drift Chambers

- Position is reconstructed by measuring the time needed for the ionization to drift in a near constant E field.
- Accuracies of 100 - 200 μm are possible.
- Momentum can be determined by the track curvature.
- Some information of the particle mass comes from $\frac{dE}{dx}$.
- Main challenge is to measure longitudinal coordinate.
A fully reconstructed event:

Run: event 4093: 1000 Ctrk(N= 45 SumE= 72.9) Ecal(N= 25 SumE= 31.0)
Ebeam 45.855 Vtx (-0.11, 0.03, -0.52) Hcal(N=22 SumE= 22.8) Muon(N= 0)
Time Projection Chambers

Diagram showing a time projection chamber with a membrane at -HV. Charged particles create ionization tracks, and the chamber is subjected to electric (E) and magnetic (B) fields.
From the drawing board to the gadget...
(N.B., design your detector to be easily accessible...)

Intervention during 1999 shutdown

Fibre found at z=36 cm
Babar instrumented flux return (used as a mainly as a muon detector)

Muons can penetrate many feet of steel

Iron

Chambers

Muons can penetrate many feet of steel
UO undergrad working to understand BaBar Resistive Plate Chambers (RPCs)
17.25 mm Thickness (35.00 mm Width)

Purified Water

Light Catcher

~11,000 PMT's

Standoff Box

Bar Box

Wedge

PMT Surface

Window

10mm

1.17 m

4.90 m

4 x 1.225 m

Synthetic Fused Silica

Bars glued end-to-end

2 July 2007

David Strom – UO
Silicon Detectors

- Detectors are based on reversed bias detectors
- In silicon charge particles produce electron-hole pairs instead of ion-electron pairs
- 3.67 eV of energy is needed to release one hole-pair (c.f. Si bandgap = 1.12 eV)
- For 300 μm thick devices about 25,000 electrons (4fC) are produced
- Main challenge is to see the small signals
- Silicon detectors can be used for both sampling calorimetry and tracking
At a linear collider it is important to be able to resolve closely spaced photons:
Si-W Calorimeter Concept

Transverse Segmentation ~5mm
30 Longitudinal Samples
Energy Resolution ~15%/E^{1/2}
Silicon Pad Detectors
Response of detectors to Cosmics
(Single 5mm pixel)
Simulate LC electronics
(noise somewhat better)

Errors do not include ~ 10% calibration uncertainty (no source calibration)

2 July 2007
Response of Detectors to 60KeV Gamma’s from Am241

Possible $\sim 1\%$ wafer-wafer calibration?

Width of distributions corresponds to ~ 1000 electrons noise. Pixels under test are on outer edge of wafer – includes larger series resistance contribution than cosmic data.
Silicon detectors can also be in a strip geometry (usually 50µm pitch) for tracking:

The OPAL microvertex detector
A simulated linear collider event reconstructed in the silicon tracking detector

Eckhard von Toerne, LCWS05
At the smallest radii it is possible to use $20\mu\text{m} \times 20\mu\text{m}$ rather than strips

- In previous experiments CCD detectors were used (similar to digital camera)
- In future experiments ”active pixels” or CMOS sensors will be used.
VXD3 at SLD

SLD Collab., NIM A400, 287-343 (1997)

CCD Vertex Detectors

307,000,000 pixels
3.8 µm point resolution
Excellent b/c tagging

SLD Collab., NIM A400, 287-343 (1997)
Thanks to Jim Brau, John Conway, Ron Settles, Eckhard von Toerne for useful slides...